- Dante

Dante Over Distance

Technical Dive

Dante Over Distance Successes

Sydney Trains Rail Network

- Geographically the project spans over an area the size of France
- 178 stations on the Sydney Trains network plus 63 on the New South Wales Trains network
- Use of MPLS Network Design.
- Achieved goal : Latency < 2ms

- Dante

Dante Over Distance Successes

Dante & Blue Note Entertainment Group

- Three Locations, 750 miles (1200 km) span New York, NY - Washington DC - Nashville, TN
- Affordable 1Gbps Layer 3 Shared Fiber Common Network to All Locations Full Access to All Sources on All Properties
- High Quality Production

Low Latency for Seamless Musical Production Uncompressed Audio and Broadcast-Quality Video

Dante Over Distance Successes

- > Dante

Al Sisci, SAS. "Dante: New York to Sante Fe, Jeff Smith Interview" – 2020. https://youtu.be/HyupwMWxSDE

Dante Over Distance Success Factors

- Dante

Network Design

• The distant locations might be part of the same VLAN or be on different routed Network Subnets.

- & Dante

Network Design: Layer 2

- Distant locations are on the same Layer 2 network (Ex: dark fiber)
- Latency and Jitter might exceed default tolerated values on un-managed networks
 - DDM/Director will allow better management of Latency for this specific network design

Network Design: Layer 3

- Distant locations are on different routed subnets
- DDM/Director is a requirement to run Dante over a Layer 3 environment
 - DDM/Director will allow better management of Latency
 - DDM will give you more flexibility in coping against Jitter

Multicast does not cross routers by default.

-× Dante

Packet Loss

- Dante assumes that there is no packet loss on the network (which is usually the case over a LAN) and has no recovery mechanisms to cope against this.
- This will result in audio artefacts because of Audio Sample loss.
- Links over the Public Internet are inherently prone to packet loss.

Target Name: www.nessoft.com									00 ms	
IP: 216.92			216.92	150 222				201 -	500 ms	
61 Samples Timed: 3/22/201				5 10:50:15 AM - 3/22/2015 10:55:15 AM				501 ms	and up	
Hop	PL%		IP	Name	Avg	Cur	0 ms	Latency	501 ms	
1		24.93.	172.1	a1-2c.neo.rr.com	0	1	9			
2		24.164	.97.70	fas0-0.akrnoh1-ubr2.neo.rr.com	19	16	þ			
З		24.164	.96.226	pos6-1.akrnoh1-rtr1.neo.rr.com	22	10	x			
4	3.3 192.41.177.248			br1.tco1.alter.net	65	60	3.00	-		
5	10.0	192.41	.177.31	br66.tco1.alter.net	60	50	1000% p			
6	8.2	157.13	0.32.178	pairnetworks-gw.customer.ALTER.NET	70	60	8.9 <mark>0% </mark>			
7	6.6	192.16	8.1.5		92	70	6.565			
8 11	4.9	216.92	. 150. 222	www.nessoft.com	66	60	4.92			
				Round Trip (ms)	66	60				
www	nessoft.	com (216	5.92.150.222) hop 8				Graph time	= 48 hours	
160 E 3/20/2015'4:00p 3/21/2015'12:00a 3/21/2015'6:00a 3/21/2015'12:00a 3/21/2015'6:00a										
	Image generated by PingPlotter 4.00.3 (http://www.pingplotter.com)									

Speed of sound changes with temperature, humidity and other factors, but the given speed works for ballpark estimates in 20 °C (68°F) at sea level.

- > Dante

26.6msec (Round-Trip)

-> Dante

Typical System Latency: 10msec (2-passes in system. 5msec single pass.)

- Dante

- > Dante

Humans start noticing latency by 5~7ms

Maximum tolerated latency to play along others is ~40ms

Audio/Video out of sync detectability thresholds are

- 45 ms audio before video
- 125 ms audio after video

Values can vary depending on ear training, age, etc

- Dante

Human Perceived Latency

Musicians hearing each other with 30ms of latency

Musicians can maintain sync

- > Dante

Human Perceived Latency

Musicians hearing each other with 60ms of latency

Timekeeper (drummer) can NOT maintain sync

Latency (Network propagation time)

- This is the average time it takes for the packets to get from location A to location B on the network.
- Minimum one-way Network Latency is 5ms/1000km*
- Network communication usually relies on Action and Response (round-trip)
- Dante flow communication is one-way

-× Dante

Latency Management in Dante

- Dante Latency is a deterministic value per device
- Network Latency is going to be compensated by the Dante devices thanks to the Device Latency setting

Max Latency	Unmanaged Dante	Managed Dante		
Dante Devices	5ms	20ms / 40ms		
Dante Software*	10ms			

-X Dante

Network Jitter

• Jitter is the latency delta for network packets traveling between the locations.

Jitter and Clocking: PTP

- Jitter is going to have a direct impact on the PTP synchronization.
- Dante clocking mechanism is PTP based.

-> Dante

Jitter and Clocking

 If there's too much jitter, calculated times (t_ms and t_sm) will vary too much resulting in irregular clock offset adjustments.

-× Dante

Jitter and Clocking

When PTP fails to achieve synchronization, Dante devices will mute.

• This can be the case over encrypted VPN links or locations connected with intermediate firewalls.

	Jitter Tolerances		
Dante Hardware*	Up to 250us		
Dante Software	Up to 1ms		

FR–OnPrem–Lyon–BK3–64ch	M.	Dante	Disabled	Follower
FR-OnPrem-Lyon-Broadway-PDK	X.	Dante	Follower	Leader
FR-OnPrem-Lyon-DanteSDK-Zima2	X.	Dante	Disabled	Follower
FR-OnPrem-Lyon-Gateway-NUC10VM	X.	Dante	Disabled	Follower
FR-OnPrem-Lyon-Gateway-Zima1	X.	Dante	Disabled	Follower
FR–OnPrem–Lyon–MIC	X.	Dante	N/A	Follower
FR–OnPrem–Lyon–RedNet–AM2	X.	Dante	Disabled	Follower

Jitter and Clocking

Network Jitter can break Unicast clocking across locations

PTPv2 Unicast PTPv1 Multicast Audio

Dante Over Distance

Overcoming Jitter

To overcome jitter:

- 1. You can enable QoS over the long-distance link, but it might not be sufficient in some cases.
- 2. You can use PTPv2 capable GPS clocks on the different locations to break the clocking dependency between sites.
 - DDM will be required for creating multiple Clocking Zones over the different locations Subnets.

- Dante

DDM Clock Zoning: GPS distribution

- Dante

Dante Over Distance Conclusions

- Use dark fiber or Private Links (MPLS, WDM...) between the different locations to ensure no Packet Loss and to have more control over the Latency and Jitter.
- Locations linked using VPN over the Public Internet will likely fail to achieve Dante Over Distance.
- The use of DDM or Director will simplify Dante Over Distance Deployments in regards of Management, Clocking and Latency.

-X Dante

•Thank you very much

Q8A

